
Asymmetric probability densities in symmetrically modulated bistable devices

M. Borromeo1 and F. Marchesoni2

1Dipartimento di Fisica, and Istituto Nazionale di Fisica Nucleare, Universitá di Perugia, I-06123 Perugia, Italy
2Dipartimento di Fisica, Universitá di Camerino, I-62032 Camerino, Italy

sReceived 16 July 2004; revised manuscript received 22 December 2004; published 21 March 2005d

A Brownian particle hopping in a symmetric double-well potential can be statistically confined into a single
well by the simultaneous action ofsad two periodic input signals, one tilting the minima and the other one
modulating the barrier height, andsbd an additive and a purely multiplicative random signal, generated by a
unique source and thus preserving a certain degree of statistical correlation. The underlying gating mechanism
is quite robust when compared, for instance, with biharmonic rocking. In view of technological implementa-
tion, asymmetric confinement through gating can be conveniently maximized by tuning the input signal
parametersscorrelation time, phase-time lag, amplitudesd, thus revealing a resonant localization mechanism of
general applicability.
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I. INTRODUCTION

A Brownian particle bound by a bistable potential diffuses
symmetrically between two potential minima; this is the case
of Kramers’ dynamicsf1g, where the particle is activated
solely by thermal fluctuations, as well as of stochastic reso-
nancesSRd f2g, where the particle escape over the potential
barrier is controlled by the interplay of noise and external
periodic drivessd. In both cases the time-averaged particle
distribution densities peak symmetrically in correspondence
with the potential minima; particle localization into one well
is customarily achieved by applying an external static bias
that breaches the symmetry of the systemf3g.

For practical purposes experimenters are interested in
confining the diffusing particle around one stable configura-
tion and then manipulating it by means of various tech-
niques; recent examples include magnetic flux microscopy
f4g, laser trapsf5g, quantum device designf6g, and chemical
reaction controlf7g, to mention but a few. However, in most
circumstances adding an external bias to the system under
study is inconvenient, hence the need for an alternate ap-
proach to the confinement problem.

In a recent paper we proved that confinement in a noisy
bistable device may be achieved without apparent symmetry
breakingf8g. A Brownian particle driven by a white, zero-
mean Gaussian noisesmimicking thermal fluctuationsd and,
possibly, by a sinusoidal force with angular frequencyV1
can be localized into one state by modulating the potential
barrier separating the two degenerate states. To this purpose
one can either input a sinusoidal control signal with fre-
quencyV2 or recycle the additive noise back through a noisy
transmission line with time delaytd and residual correlation
l. In both schemes the corresponding steady distribution
densities develop one prominent peak, whose relative mag-
nitude hits aresonancemaximumsof over 95%d for optimal
values of the input parameterssV1 and V2 or td and l, re-
spectivelyd; which degenerate state the particle gets trapped
in depends on the switch-on phase of the modulating signal.

The present article is organized as follows. In Sec. II we
introduce a simple model of periodically rocked-pulsated
double well; the overdamped stochastic dynamics that takes

place over the modulated barrier is gated toward one pre-
ferred well, depending on the relative phase of the applied
drives. In Sec. III we compare this instance of asymmetric
confinement with an even simpler but less robust example,
where asymmetry is obtained through a biharmonic drive, an
indirect manifestation of harmonic mixing. In Sec. IV we
show that the gating mechanism of Sec. II can be generalized
to the case of noisy modulating drives with appropriate sta-
tistical cross correlation and/or relative time delay.

II. ROCKED-PULSATED DOUBLE WELL

The key mechanism underlying the phenomenon of asym-
metric confinement is well illustrated by the study model of
an overdamped Brownian particle of coordinatexstd diffus-
ing in a quartic double-well potentialVsxd=−ax2/2+bx4/4,
with a,b.0, subjected to a zero-mean Gaussian noisejstd
and two rectangular signalseistd=ei sgnfcossVit+fidg, i
=1,2, with periodsTi =2p /Vi—namely,

ẋ = af1 + e2stdgx − bx3 + ax0e1std + jstd s1d

and kjstdjs0dl=2Ddstd. Here, the additive signale1std rocks
the potential sidewise, whereas the control signale2std sets
the symmetric barrier separating the degenerate minima
±x0= ±Îa/b, to a high-low heightDV±=DV0s1±e2d2, with
DV0=a2/4b. The two configurations of the rocked-pulsated
potential are shown in Fig. 1.

The steadystime-averagedd distribution densitiesPsxd of
the stochastic processs1d have been computed by standard
numerical simulation. In Fig. 2sad our numerical data for
V1=V2 and f1=f2=0 exhibit a marked asymmetry, corre-
sponding to a stochastic confinement of the particle to the
left-hand sidesLHSd—i.e., in the negative potential well. In
view of the input signal synchronization, a qualitative inter-
pretation of this outcome is immediate: As long as the driv-
ing force e1std points to the right, the barrier is set to its
larger valueDV+, so that the Brownian particle takes a rela-
tively long time to jump into the more stable well to the right
sfrom where it can hardly escaped; vice versa, as the additive
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force reverses sign, the barrier switches to its lower value
DV−, thus speeding up the right-to-left escape process. As a
result, the spatial distribution densityPsxd tends to accumu-
late around −x0. Of course, shifting the relative phasef2
−f1 by p is equivalent to changingx→−x and thus revers-
ing asymmetry, as shown in Fig. 2sad.

The gating mechanismf9g invoked here is expected to
become increasingly efficient asD is lowered belowDV0. In
Fig. 2sbd the subtracted asymmetry factors; P−/P+−1,
with P± ;ke0

`Ps±x,tddxlt and k¯lt denoting the stationary
time average taken over one forcing cycle, diverges expo-
nentially for D→0 and tends to zerosno confinementd ac-
cording to a power law forD→`.

The dependence ofs on the forcing periodTV, with TV

=T1=T2 ssynchronoussignalsd, reveals a broad resonance
peakfFig. 2scdg. This property points to an underlying reso-
nant activation mechanismf10g: Due to the rectangular
modulatione2std, the bistable potential switches between two
configurationsV±sxd=−as1±e2dx2/2+bx4/4; the two-valued
tilting term 7e1ax0x removes the symmetry of the corre-
sponding barriersDV±—that is, when jumping to the right
sleftd, the particle overcomes different tilted barriers with
heightsDV±

+ sDV±
−d, respectively. For the kind ofe1,2std sig-

nals employed here—i.e., in-phase and of comparable ampli-
tudes 0,e1,e2!1—these four barrier heights obey the in-
equalities DV−

−!DV+
+&DV−

+!DV+
− ssee Fig. 1d. As

anticipated above, the directsleft-to-rightd escape timeT+
+

over the higher barrierDV+ is much larger than the reverse
escape timeT−

− over the lower barrierDV−, thus causing an
accumulation of the probability density in the negative well.
However, when the forcing periodTV grows much longer
thanT−

−, probability leakage through direct escape over both
barrier configurations starts degrading the gating effect, so
that P−/P+ decays backcloseto unity.

The dynamics of confinement under the conditions of Fig.
2 is further illustrated in Fig. 3sad, where the distributions of
the escape timesT from the left to the right,N+sTd, and vice
versa,N−sTd, are plotted for an optimal choice of the modu-
lation period—i.e., TV,T−

−/2. As expectedf11g, escape
times equal to odd multiples ofTV /2 are favored in both
directions; however, only the reversesright-to-leftd escape
process is closely synchronized with the in-phase periodic
signalse1std ande2std, as manifested by the prominent peak
of N−sTd at T=TV /2. The escape phase analysisf13g in Fig.
3sbd clearly reveals the nonstationary nature of stochastic
confinement: Under resonant conditions most jumps in either
direction occur within one half forcing period from the latest
switch of the two in-phase signals, with the synchronized
jumps to the left outnumbering the synchronized jumps to
the right.

In a more general setup,e1std ande2std may differ either
in phase—for instance, when an external force acting upon
the diffusing particlexstd also modulates its substrateVsxd

FIG. 1. Rocked-pulsated quartic double-well potentials1d: a
=b=1, e1=e2=0.1. The two configurations fore1,2std.0 supperd
ande1,2std,0 slowerd are contrasted with the unperturbed potential
Vsxd spointed curved. The relevant barrier heights areDV−

−=0.111,
DV+

+=0.2, DV−
+=0.3, andDV+

−=0.409ssee textd.

FIG. 2. sColor onlined sad Time-averaged probability densities
Psxd of the processs1d for different periodsT1=T2=TV. Simulation
parameters:e1=e2=0.1, a=b=1, DV0/D=4, f2−f1=p sdashed
curved and f2−f1=0 sall remaining curvesd; see Fig. 1. Time av-
erages are taken over 105 cycles.sbd Subtracted asymmetrys ver-
susD for f2−f1=0 and three different values ofTV; scd s versus
TV for f2−f1=0 and three different values ofDV0/D. A vertical
arrow marksTV=2T−

−, T−
− being the corresponding shortest Kram-

ers’ escape time.
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with a phase lag that depends on the internal friction of the
systemf14g—or in frequency—corresponding to the case of
two distinct input signalsssay, a drive and a control signald.
In Fig. 4sad we plotted the subtracted asymmetrys versusV2
for fixed T1 and f1=f2. A few remarkable properties are
apparent:sid Confinement occurs only forcommensurateV1
andV2—namely, forV1/V2=p/q, with p,q prime integers.
sii d For irrationalV1/V2 ratios, P−/P+=1 within numerical
accuracy.siii d The spikes ofP−/P+ versusV1/V2 can be
rearranged in families with “odd” indicesV1/V2=s2m
−1d / s2n−1d or “even” indices V1/V2=s2m−2d / s2n−1d;
both indices are obtained by keeping the integern fixed and
letting m run from n+1 to infinity swith the additional con-
dition that numerators and denominators are prime
integersd—i.e., V1/V2.1. Moreover, to each suchV1/V2
family we can associate a family with identical “conjugate
index” V2/V1. sivd The smallern, the more prominent is the
spike family; moreover, within each family the spike ampli-
tudes decrease with the running indexm.

The efficiency of stochastic confinement depends on the
phases of both signals:s plotted versusf2 fFig. 4sbdg oscil-

lates around its average value 0 with amplitude proportional
to the modulation factorpsDp,qd= up−Dp,qu /p−0.5 smod 1d,
where forV1/V2=p/q the dephasing angleDp,q readsDp,q
=pf2−qf1.

The adiabatic limitT1,2→`, far from providing an opti-
mal confinement, still allows a quantitative interpretation of
the sout-of-resonanced properties listed above. For rectangu-
lar e1,2std input signals, the high-low barrier potentialsV±sxd
are tilted symmetrically to the right or left asV±

±sxd
=V±sxd7e1ax0x. Correspondingly, if both forcing periods
T1,2 are much longer than the slowest escape time, then the
time-averaged distribution density reads

Psxd = P0sxd − s− 1dm+nDPsxdpsD2m−1,2n−1d
s2m− 1ds2n − 1d

, s2d

for V1/V2=s2m−1d / s2n−1d and Psxd=P0sxd otherwise;
here,

FIG. 3. sColor onlined sad Escape time distributions: left to right,
N+sTd ssolid symbolsd, and right to left,N−sTd sopen symbolsd, for
DV0/D=4, TV=80, andf2−f1=0. The other simulation param-
eters are as in Fig. 2sad. Note that the envelopesdashedd curves
decay like exps−T/T±

* d with T±
* =2T+

±T−
± / sT+

±+T−
±d computed by

means of Eq.s5.112d of Ref. f3g. sbd Escape phase distributions for
different values ofDV0/D, TV=80, andf2−f1=0: left to right
ssolid symbolsd and right to leftsopen symbolsd. The escape phase
f /2p is defined as the time delaysin units ofTVd between a given
in-phasee1,2std switch and the next particle jump. Solid and open
circles represent the overlappingN±sTd distributions in the absence
of barrier modulation—i.e.,e2=0.

FIG. 4. sColor onlined sad Subtracted symmetry factors versus
V1/V2 sopen symbolsd and V2/V1 ssolid symbolsd for T1=80.
Here, DV0/D=4 andf2−f1=0; the remaining simulation param-
eters are as in Fig. 2sad. Dashed curves connect the spikes belong-
ing to the same familyswith index shownd. sbd s versusf2 with
f1=0 and different values ofV1/V2. All other simulation param-
eters are as insad. Note that the oscillations displayed are well
reproduced by the modulation factorpsDp,qd ssee textd.
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P0sxd =
1

2
fP+sxd + P−sxdg, DPsxd =

1

2
fQ+sxd − Q−sxdg,

s3d

whereP±sxd=fe−V±
+sxd/D+e−V±

−sxd/Dg /2N± are evenx functions,

Q±sxd=fe−V±
+sxd/D−e−V±

−sxd/Dg /2N± are odd x functions, and

N±=e−`
` e−V±

+sxd/Ddx are suitable normalization constants. One
notices immediately that in the adiabatic limit noP−/P+
spike is predicted forV1/V2=s2m−2d / s2n−1d, consistently
with the result of Fig. 4sad that for finiteV1,2 the even spikes
with index s2m−2d / s2n−1d are suppressed with respect to
the corresponding odd spikes with indexs2m−1d / s2n−1d.
Moreover, in view of Eqs.s2d ands3d, the amplitudes of the
odd spike families decrease with the running indexm to-
wards the asymptotic valueP−/P+→ s1+dd / s1−dd.1, with
d=e−`

` uDPsxdudx/ fs2m−1ds2n−1dg diverging exponentially
for D→0 and tending to zero according to a power law for
D→` fsee Fig. 2sbdg.

III. BIHARMONICALLY ROCKED DOUBLE WELL

The asymmetry of the time-averaged probabilitiesPsxd in
a modulated bistable system can always be traced back to
some inherent asymmetry of the driving mechanism. In the
gating effect of Sec. II such an asymmetry is due to the
relative phaseDp,q of the input signals being kept constant
throughout the process; the sign of a single signal cannot be
reversed without changingDp,q.

This phenomenon has been overlooked even in the SR
literature f2,12,15g. The most elementary model exhibiting
asymmetric confinement we could think of corresponds to a
simplified version of Eq.s1d,

ẋ = ax− bx3 + ax0Fstd + jstd, s4d

wherejstd is defined as above and

Fstd = A1 cossV1t + f1d + A2 cossV2t + f2d. s5d

Here, for commensurate frequenciesV1/V2=p/q, the bihar-
monic signalFstd is clearly asymmetric; the dynamicss4d is
symmetric under signal reversalF→−F only for irrational
V1/V2 fsee inset in Fig. 5sbdg.

No surprise that the time-averaged probability densities of
the processs4d develop a certain degree of asymmetry, quan-
tified by a nonzero factors sFig. 5d. However, determining
the sign ofs is not as straighforward as in Sec. II.

In the adiabatic limit of Fig. 5,V1,V2→0 with V2/V1
=2 andf1=f2, the zero-mean periodic driveFstd is negative
during a larger fraction of its periodT1 than it is positive. As
a consequence, one might predict an accumulation of the
particle distributions in the negative well—that is,s.0.
This is confirmed by the adiabatic estimate

Psxd = kPsx,tdlt, s6d

with Psx,td=Nstdexpf−Vsx,td /Dg, Vsx,td=Vsxd−ax0xFstd,
ande−`

` Psx,tddx;1; the resulting asymmetry factor attains a
positive maximum for vanishingly low commensurate fre-
quencies, in agreement with our numerical simulationfsee
Fig. 5sbdg.

Furthermore, numerical simulation shows that on increas-
ing V1 with V2/V1=2, s decreases and eventually changes
sign. This is an instance of the phenomenon known as reso-
nant activationf10,16g. For f1=f2 the forcing wave form
s5d develops large-amplitude crests of relatively short time
duration: as long as the forcing periodT1 is larger thanT+

+,
but shorter thanT−

− snote here thatT+
+,T−

+,T−
−,T+

−d, the
particle flow from left to right is favored ands grows nega-
tive. For extremely fast oscillations ofFstd the Brownian
particle sees an average potentialkVsx,tdlt=Vsxd; i.e., no
asymmetry effects are detectable. This is the behavior dis-
played by the curvess versusV1 in Fig. 5sbd.

The processs4d exhibits asymmetric confinement as a re-
sult of the nonlinear combination of the two harmonic com-
ponents ofFstd. Such a mechanism, experimentally estab-
lished asharmonic mixing, was not much explored in the
context of transport theory, until very recentlyf9g. However,
at variance with harmonic mixing in a sinusoidal potential
f17g, here the induced probability unbalance changes sign

FIG. 5. sColor onlined Biharmonically rocked double-well po-
tential s4d and s5d: sad Time-averaged probability densitiesPsxd of
the processs4d for DV0/D=4, andV1=0.005 andV2=0.01 scurve
1, greend, V1=0.1 andV2=0.2 scurve 2, redd, and V1=0.1 and
V2=0.13Î5 scurve 3, blued. sbd Subtracted asymmetrys versus
V1;V0; blue open squares:V2=2V0 and DV0/D=4; red solid
squares:V2=2V0 and DV0/D=6; green crosses:V2=Î5V0 and
DV0/D=4. Horizontal arrows point to the analytic estimates6d for
V2=2V1→0 ssame color coded. Inset: distribution of the simula-
tion forcing signals5d sampled with time step 0.001: blue curve 1:
V2=2V1 sasymmetric, commensurate cased; red curve 2: V2

=Î5V0 ssymmetric, incommensurate cased. Other simulation pa-
rameters:a=b=1, A2=A1=0.1, and integration time step 0.001.
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with V1 sfor V1/V2 a constant rational numberd, thus mak-
ing this effect less robust and predictable than the gating
effect of Sec. II.

IV. NOISE MIXING

We now come back to the focus of this paper—namely, to
asymmetric confinement through gating. A variation of the
mechanism under study can be achieved by employing two
correlatednoisy signalsf18g. Let us consider the case of Eq.
s1d when e1,2std denote two stationary, zero-mean-valued
Gaussian noises with correlation functions

keistde js0dl = li j

ÎQiQj

ti j
expS−

utu
ti j
D s7d

and kjstdeis0dl=0 si , j =1,2d. To avoid technical complica-
tions we assume thatti j ;tc andl11=l22=1. The parameter
l;l12=l21 characterizes the two-signal cross correlation:
namely, l=0, independent signals;l=1, identical signals,
e2std;e1std; l=−1, signals with reversed sign,e2std
;−e1std. Two signals generated by a unique noise source
can get partially decorrelated,ulu,1, as an effect of different
transmission or coupling mechanisms.

In the white noise limittc→0, the Fokker-Planck equa-
tion associated with the processs1d, s7d admits of a station-
ary solution in closed formf19g—i.e.,

Psxd =
N

fQsxd + Dg1/2 expF−Ex V8syddy

Qsyd + D
G , s8d

with Qsxd=a2sx0
2Q1+x2Q2+2lx0xÎQ1Q2d and N a suitable

normalization constant. The distributionPsxd is clearly
asymmetric forlÞ0 ssee Figs. 6 and 7d. Moreover, the sign
of l, similarly to the relative phaseDm,n in the ac case of Fig.
4sbd, determines the well where the particle tends to localize.

FIG. 6. sColor onlined Noise mixings1d, s7d: Subtracted asym-
metry s versustc for different values ofQ1=Q2 sad and of the
standard deviations1=s2 sbd; here si

2;Qi /tc ssee textd. Other
simulation parameters:a=b=1, DV0/D=4, l=1, and integration
time step 0.001.

FIG. 7. sColor onlined Noise mixings1d, s7d: Subtracted asym-
metry s versus the intensityQ2 of the noisy signal e2 for tc

=0.005 and differentDV0/D andQ2/Q1 ssymbols, different colorsd;
the corresponding analytical predictions fortc=0, Eq.s8d, are dis-
played as solid curvesssame colord. Other simulation parameters:
a=b=1, l=1, and integration time step 0.001. Note that settingl
=1 does not imply full statistical cross correlation between the mul-
tiplicative signale2std and the total additive noisee1std+jstd.

FIG. 8. sColor onlined Subtracted asymmetrys versus the rela-
tive e1, e2 delay timetd for different values ofQ1 sad and tc sbd.
Other simulation parameters:a=b=1, DV0/D=4, l=1, Q1=Q2,
and integration time step 0.001.
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The magnitude of the confinement effect is controlled by
sid the correlation timetc sFig. 6d. The subtracted asymmetry
s decaysexponentiallywith tc from the corresponding ana-
lytic value of Fig. 7 down to the adiabatic estimate obtained
by computings=sse1,e2d at fixede1,e2 and then averaging
over the Gaussian distributions ofe1,e2, sstc→`d
=ksse1,e2dl1,2. The decay constanttc

* of the curves s
=sstcd is comparable with the adiabatic estimate
kTse1,e2dl1,2 of the relevant escape timeTse1,e2d out of a
deformed potential well.sii d The additive noise intensitiesQ1
andD sFig. 7d. For tc→0 the analytical estimate ofs based
on Eq.s8d reproduces quite closely our simulation results for
atc=0.005 or smaller. For fixedQ2 andD, the curvesssQ1d
resonateat a certain intensity of thecorrelatedadditive noise
e1std, whereas the asymmetry increases uniformly with de-
creasing the intensityD of the uncorrelated noisejstd. More-
over, for largeQ2 the curvesssQ2d approach an asymptotic
value depending onD and Q1 salso an adiabatic limit
f10,16gd.

A closer resemblance with the resonant dynamics under-
lying the ac confinement of Fig. 2 was obtained by assuming
thate2 is transmitted with atime delaytd relative toe1—e.g.,
by replacinge2std→e2st−tdd in Eq. s1d f20g. In Fig. 8 the
resonant nature of stochastic confinement is apparent:sid The
curves sstdd tend to peak aroundtd,tc for large noisy
modulationsfFig. 8sadg and/or short correlation timesfFig.
8sbdg. sii d The asymmetric confinement becomes more effec-

tive on increasingQ1,Q2 for td,tc. Here we limit ourselves
to a qualitative interpretation of these observations: When
the relative time lag ofe1,e2 grows much larger thantc, the
two signal become effectively uncorrelated and therefore in-
capable of trapping the particle in either well—i.e.,sstdd
→0 for td→`; however, as the escaping particle takes a
finite time to overcome the potential barrier, a nonvanishing
delaytd with td,tc

* makes the confinement mechanism, al-
ready described for the ac case, more efficient; hence the
raising branch ofsstdd with td,tc.

V. CONCLUSIONS

In conclusion, the nonlinear mixing of additive and mul-
tiplicative zero-mean signals, periodic or random, alike, is
capable of localizing a Brownian particle in one well of a
symmetric bistable potential through a resonant mechanism
of stochastic symmetry breaking, a mechanism that went un-
noticed in previous workf15g. Correspondingly, preliminary
evidence suggests that the Brownian motion on a symmetric
substrate under appropriate modulation conditions may exi-
bit resonant rectificationf9,21g. Direct applications of the
confinement techniques proposed in this article are within
the reach of existing experimental technologies; a promising
example is the control of the polarization state of the light
emitted by a vertical-cavity-surface emitting laserf22g.
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